تحقیق روش های محاسبه ساختمان الکترونیکی اتم ها، مولکول ها و جامد

 

برای دریافت پروژه اینجا کلیک کنید

  تحقیق روش های محاسبه ساختمان الکترونیکی اتم ها، مولکول ها و جامدات در pdf دارای 86 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق روش های محاسبه ساختمان الکترونیکی اتم ها، مولکول ها و جامدات در pdf   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه تحقیق روش های محاسبه ساختمان الکترونیکی اتم ها، مولکول ها و جامدات در pdf

مقدمه  
2-1) مدل ژلیوم  
2)مدل توماس- فرمی   
دومین معادله خود سازگار  
3-1) کلیات  
3-1-1) مسائل با شرایط اولیه :  
3-1-2) مسائل با شرایط مرزی :  
3-2) حل عددی معاد لات دیفرانسیل معمولی مرتبه اول با شرایط اولیه:  
3-2-1) روش اولر:  
3-2-2) روش رونگ – کوتا:  
3-2-2-1) روش رونگ – کوتا مرتبه دوم:  
3-2-2-2) روش رونگ – کوتا مرتبه چهارم:  
3-3) روش تکرار کننده در حل معادلات دیفرانسیل معمولی و پاره ای با شرایط مرزی:  
3-3-1) روش تکرار برای حل معاد لات دیفرانسیل معمولی:  
3-3-2) روش تکرار برای حل معادلات دیفرانسیل پاره ای :  
4-1) کلیات:  
4-2) کاربردهای قوانین جمع  
4-3) بدست آوردن قوانین جمع  
4-4) نظریه هلمن- فاینمن  
4-5) کاربرد نظریه هلمن-فاینمن برای سطح ژلیوم و بدست آوری قانون اول جمع  
4-6) بدست آوردن قوانین جمع با استفاده از نظریه اختلال روی حالت پایه  
5-1) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا (در فضای محدود)  
5-1-1) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا; درون نیم فضای ژلیوم (x<0)  
5-1-2) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا; درون نیم فضای غیر ژلیوم (x0)  
5-2) حل عددی معادله توماس فرمی برای حالت دو بعدی در مدل لبه ژلیوم ربع فضا (در فضای محدود)  
5-3) حل عددی معادله توماس فرمی برای حالت  یک و دو بعدی در مدل ژلیوم در فضای نامحدود  
5-4) بررسی صحت یا سقم نتایج حل عددی معادله توماس – فرمی در مدل ژلیوم با استفاده از قوانین جمع  
نتیجه گیری  
فهرست مراجع:  

بخشی از فهرست مطالب پروژه تحقیق روش های محاسبه ساختمان الکترونیکی اتم ها، مولکول ها و جامدات در pdf

1- کیتل، چ.،پور قاضی وصفاوعمیقیان ، 1367 ، آشنایی با فیزیک حالت جامد ، تهران ، مرکز نشر دانشگاهی

عمر،ع. ،نبیونی ،1380 ،فیزیک حالت جامد،اراک ، دانشگاه اراک ،جلد اول . 2-

3- هوک ،ج  و هال ،ا .،اکبر زاده و بابایی و صفا ،1379 ، فیزیک حالت جامد، اصفهان، دانشگاه صنعتی اصفهان،ویرایش دوم

4-  موسوی ،ف و نوری امامزاده ئی،م . ، 1380 ، کاربرد روشهای عددی در منابع آب ، اصفهان ، ارکان 

5-  مهری ،ب .،1383  ، محاسبات عددی ، تهران،جهاد دانشگاهی صنعتی امیر کبیر

Books:

6- S .E.Koonin,  Computational physics و  ( fortran version ). (1998)

 7- A.Kiejna, Metal Electron Surface Physics, (1996)

 8- Numerical recipes in fortran 77 : the art of scientific  computing

 ( isbn- 0 -521 – 43064-x). Copyright ( c) 1986 – 1992 by Cambridge university press

9- N.W.Ashcroft and N.D.Mermin, Solid State Physics (1976)

Articles:                                                                                                                           

10- M.Farjam,Physica  B   569   (2005)

” Energy of step formation on metal surfaces from stabilized jellium model”

 11- G .Shreckenbach * و R.Kaschner و  and Zieche  و  Phys.Rev.B  46,  (1992)

“Force sum rules , strees theorems , and Thomas-Fermi treatment of a 90o jellium edge”

 12- J.Vannimenus and H.F.Budd , solid state commun.15, 1739 (1974)

“Sum-rules and the surface energy of metals

 13- p.streitenberger , Phys.Solid State Commun. (1994)

“Sum rules for the uniform-background model of an atomic-sharp metal corner” 

مقدمه

روشهای اصول اولیه مختلفی برای محاسبه ساختمان الکترونیکی اتمها، مولکولها و جامدات وجود دارد که دو صورت آنها عبارتند از 1- نظریه تابعی چگالی [1] 2- نظریه هارتری-فوک [2] روشهای تابعی چگالی بطور وسیع در مطالعه جامدات مورد استفاده واقع می شوند زیرا این روش شناسایی خیلی ساده تر و از نظر محاسباتی نیز ارزانتر می باشد. روشها هارتری – فوک بعلت داشتن محاسبات خیلی زیاد که هزینه های زیادی را در بر می گیرند در جامدات بکار برده نمی شوند. در روش هارتری -فوک فرض می شود که الکترونها در مولکول یا جامدات می توانند بصورت ذرات مستقل رفتار کنند البته این بدین معنی نیست که کنش متقابل بین آنها و هسته نادیدگرفته شود. نظریه هارتری – فوک تنها یک تقریب است. الکترونها راقعاً مستقل از یکدیگر حرکت نمی کنند بلکه حرکتشان همبسته بوده و این حرکت همبسته یک انرژی پایین تری را در مقایسه با موقعیت غیر همبسته نتیجه می دهد. اختلاف انرژی بین موقعیتهای همبسته و غیر همبسته انرژی همبستگی نامیده می شود[3]. با توجه به اینکه الکترونها بعلت داشتن چرخش (اسپین) فرمیون بوده و فرمیونها از اصل طرد بائولی تبعیت می کنند لذا یک عدم تقارن در تابع موج الکترون وجود دارد. این عدم تقارن تابع موج یک قسمت دیگری بنام انرژی تبادلی[4] را به انرژی کل سیستم وارده می کند نظریه هارتری – فوک می تواند به طور کامل انرژی تبادلی یک سیستم الکترونی را محاسبه کند اما در محاسبه انرژی همبستگی بعلت فرض مستقل بودن الکترونها از یکریگر ناتوان می باشند

بناراین روش هارتری – فوک کارایی لازم نداشته، ضروریست روش جایگزین دیگری معرفی گردد که در آن الکترونها بعنوان مجموعه ای از ذرات مستقل فرض شده اما با این تفاوت که بتوان هر دو انرژی تبادلی و همبستگی را هر چند بصورت تقریبی محاسبه کرد. این روش، روش تابعی چگالی بوده که برای استفاده در مدل ژلیوم  بسیار سودمند می باشند. مدل ژلیوم از مدل الکترون آزاد در فلزات تبعیت میکند. محاسبات مدرن در خصوص بررسی خواص الکترونیکی فلزات با توصیف چگالی الکترون  در حضور چگالی یکنواخت یونهای فلزات شروع می شوند . این توصیف یعنی توزیع الکترونها در گستره ای یکنواخت از بارهای مثبت همان مدل ژلیوم می باشد. در این مدل توزیع یکنواخت بار مثبت با یک تابع پله ای  با حضور سطوح باعث ایجاد ناپیوستگی در توزیع چگالی الکترون در سطح می شود. خیلی دور از سطوح ژلیوم بعلت یکنواختی توزیع  بارهای مثبت در کلیه یک همسانگری و در سطح ژلیوم یک عدم توازن بار یک اختلاف پتانسیل وجود دارد. موضوع اصلی در روشهای نظریه تابعی چگالی جایگزینی یک مسئله N بعدی با تعدادی الکترون غیر قابل تمییز بجای  تعداد N مسئله تک الکترونی با یک پتانسیل موثر است که  تابعی از چگالی الکترون می باشند. این پتانسیل شامل قسمتهای اصلی هسته- الکترون، الکترون- الکترون و نیز قسمت دیگری که تبادل و همبستگی بین الکترونها را توصیف می کنند می باشد. در مورد خاص ژلیوم، هر دو قسمت اول در حجم[5]  ژلیوم حذف می شوند زیرا چگالی های هر دو بارمثبت و منفی یکنواخت هستند و دو قسمت آخر معمولاً با هم  به عنوان انرژی های تبادلی و همبستگی (Exc)بکار بوده می شوند. لذا بر خلاف روش هارتری-فوک انرژی همبستگی نیز قابل محاسبه می باشد. لانگ و کوهن [6] افرادی بودند که با استقاده از روش تابعی چگالی در مورد مدل ژلیوم بسیار مطالعه نمودند. سی و پنچ سال از زمان کار اولیه آنها با توسعه رایانه ها این مدل توسعه یافته و در حل بسیاری از مسائل فیزیک مورد استفاده واقع گردید. ما نیز در این تحقیق به حل عددی معادله توماس- فرمی که توصیف تقریبی ساده ای از سیستم بس ذره ای است برای مدل ژلیوم نیم فضا و ربع فضا پرداخته ایم. هدف ما از حل این مسئله صحه گذاری بر قواعد جمع بد-ونیمنوس[7] برای این مدل بوده و این مستلزم داشتن مقادیر عددی دقیق از کمیتهای موجود در سیستم مانند تابع پتانسیل یا انرژی پتانسیل       می باشد

2-1) مدل ژلیوم

همان گونه که می دانیم نظریه ساده مدل الکترون آزاد در توضیح خواص خیلی از فلزات بسیار کار آمد است. بدین منظور فرض می شود که الکترونهای رسانشی کاملاً آزاد هستند و فقط یک پتانسیل در سطح نمونه بر آنها مطابق شکل زیر اعمال می گردد

 در نتیجه اعمال این پتانسیل الکترونها در داخل نمونه محبوس می شوند. در این مدل بجز بازتابهای نادری که الکترونها از سطح نمونه می کنند الکترونهای رسانش بدون هیچ گونه برخوردی، در داخل نمونه حرکت کرده و رفتاری شبیه رفتار یک گاز ایده آل دارند بهمین دلیل ما صحبت از گاز الکترون آزاد می کنیم. با نگاه دقیق تر این سوال در ذهن مطرح می گردد که چگونه این مدل می تواند معتبر باشد در حالیکه انتظار می رود الکترونها با یونهای زمینه و همچنین با همدیگر بر هم کنش داشته باشند. با توجه به اینکه این بر هم کنش ها قوی هستند باید الکترونها برخوردهای متعددی داشته باشند لذا تصویری از یک گاز کاملاً غیر ایده آل در ذهن مجسم می شود. پس چرا مدل الکترون آزاد جواب می دهد؟ پاسخ این سوال برای کسانی که این مدل را برای اولین بار ارائه دادند معلوم نبود ولی حالا جواب آن را با دلایل زیر بیان می کنیم

دلیل اینکه چرا فرض شد بر هم کنش بین یون ها جواب می دهد این است که اگر چه یک الکترون با یون بر هم کنش کولنی دارد ولی آثار کوانتومی، یک پتانسیل دفعی اضافه معرفی می کند که تمایل به حذف بر هم کنش جذبی دارد که این پتانسیل خالص شبه پتانسیل[8] نام دارد و بخصوص در مورد فلزات قلیائی عمل می کند. دلیل دیگر در این خصوص این است که الکترون فقط کسر کوچکی از وقت خود را در نزدیکی یون که پتانسیل در آنجا قوی است می گذراند و اغلب اوقات، الکترون در نواحی دور از یون، یعنی جائیکه پتانسیل ضعیف است می باشد. دو دلیل برای ضعیف بودن بر هم کنش بین خود الکترونها وجود دارد؛ اول اینکه طبق اصل طرد پائولی الکترونهای با اسپین مداری تمایل دارند از یکدیگر دور بمانند. دوم اینکه حتی اگر اسپین ها مخالف باشند به منظور کمینه کردن انرژی سیستم، الکترونها تمایل دارند از یکدیگر دور بمانند. اگر دو الکترون خیلی به یکدیگر نزدیک شوند، انرژی پتانسیل بطور فزاینده ای بزرگ می شود که این بر خلاف تمایل سیستم الکترونی به داشتن کمترین انرژی ممکن است

از نظر ریاضی هر الکترون توسط ناحیه ای کروی که از الکترونهای دیگر خالی است احاطه شده است این ناحیه حفره فرمی نامیده می شود و شعاعی در حدود  دارد که مقدار دقیق این شعاع به چگالی الکترونی بستگی دارد. با حرکت الکترون حفره آن نیز با آن حرکت می کند. اگر برهم کنش بین دو الکترون خاص را مشاهده کنیم در می یابیم که الکترونهای دیگر خود را به گونه ای توزیع می کنند که این دو الکترون خود را از یکدیگر محافظت نمایند. در نتیجه بر هم کنش خیلی کوچکی بین آنها وجود دارد

جدا شدن الکترونهای رسانش از یک اتم مغز یونی با بار مثبت به جای می گذارد. در این مدل توزیع یون های مثبت فلزی به طور یکنواخت در درون نمونه و سر تا سر فلز در نظر گرفته می شوند لذا یک زمینه با بار مثبت[9]  وجود دارد که به دلیل توزیع یکنواخت میدان الکتریکی اعمال شده از طرف آنها بر الکترون ها صفر بوده است به گونه ای که الکترون ها در یک فضا با پتانسیل الکترواستاتیکی ثابت حرکت است این مدل الکترونی که در آن یون های مثبت به صورت ژله یکنواخت توزیع شده است را مدل ژله ای یا ژلیوم[10] می نامند. یون ها یک ژله یکنواختی را تشکیل می دهند که الکترونها درون آن حرکت می کنند بنابراین در توصیف خواص فلزات با مدل الکترون آزاد فضای داخل فلز را ژلیوم و سطوح یا لبه فلز را لبه ژلیوم      می نامیم موضوع بحث ما در این تحقیق ژلیوم نیم فضا[11]  و ربع فضا[12] می باشد

2)مدل توماس- فرمی [13]

معادله شرودینگر درسه بعد برای الکترونهای درون فلز با در نظر گرفتن مدل الکترون آزاد  برای آن عبارت است از

از آنجا که خواص حجمی یک قطع ماکروسکوپی فلز، نظیر ظرفیت گرمایی ویژه، مستقل از شکل فلز است، برای سادگی، مکعبی از فلز به یال L یا با وجوهی عمود بر محور های x ،y ،z در نظر می گیریم

 توابع موج و  انرژی های الکترونهای درون مکعب مربوط به اربیتال با بردار موج است. پتانسیل یکنواخت درون مکعب را با فرض مدل الکترون آزاد صفر منظور کرده ایم. توابع موج، به شرط مرزی بر روی وجوه مکعب  بستگی دارند. با توجه به اینکه در این مدل فرض شده الکترونها در داخل فلز محبوس شده و در آنجا آزادانه حرکت می کنند  و نیز اینکه از نظر تجربی خواصی حجمی فلزات به شرایط وجوه بستگی ندارند، در نتیجه خواص محاسبه شده به شرایط مرزی وابسته نمی باشد لذا می توان هر گونه شرط مرزی دوره ای مثلاً شرط را برروی وجوه به کار بریم که به امواج ساکن زیر،جواب های معادله شرودینگر در درون فلز منجر می شود

 

در حالت پای یک دستگاه شامل N الکترون آزاد، می توانیم اربیتالهای اشغال شده را به صورت نقاطی در داخل کره در فضای  نشان دهیم. در این صورت انرژی در سطح کره برابر انرژی فرمی است؛ بزرگی بردار موجها در سطح فرمی برابر است، بنابر این طبق رابطه (2-8)داریم

با استفاده از روابط (2-5)و(2-6)و(2-7) ملاحظه می کنیم که بردار عنصر حجم  در فضای ، یک بردار موج مجاز – یعنی، یک دسته سه تایی متمایز از اعداد کوانترمی  وجود دارد. لذا در کره ای به حجم  تعداد کل اربیتالها برابر است با

ضریب 2 در طرف چپ به این دلیل آمده که برای هر مقدار مجاز  دو مقدار مجاز ، عدد کوانتومی اسپینی وجود دارد

 

دومین معادله خود سازگار

[1] – Density Functional Theovye DFT

[2] – Hartree – Fock – HF

[3] – Correlation

[4] – Exchange

[5] – bulk

[6] -Lang and Kohn

[7] -Budd-Vannimenus

[8] – Pseudo potential

2.Posetive back ground

3. jellium

1- half space jellium

2- quarter- space jellium

3 – Thomas Fermi-model

[14] – Bulk

[15] – self-consistency equations

[16]- scaled coordinate

[17] – scaled density

[18] – scaled potential

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :